246 research outputs found

    Combined Intra- and Inter-domain Traffic Engineering using Hot-Potato Aware Link Weights Optimization

    Full text link
    A well-known approach to intradomain traffic engineering consists in finding the set of link weights that minimizes a network-wide objective function for a given intradomain traffic matrix. This approach is inadequate because it ignores a potential impact on interdomain routing. Indeed, the resulting set of link weights may trigger BGP to change the BGP next hop for some destination prefixes, to enforce hot-potato routing policies. In turn, this results in changes in the intradomain traffic matrix that have not been anticipated by the link weights optimizer, possibly leading to degraded network performance. We propose a BGP-aware link weights optimization method that takes these effects into account, and even turns them into an advantage. This method uses the interdomain traffic matrix and other available BGP data, to extend the intradomain topology with external virtual nodes and links, on which all the well-tuned heuristics of a classical link weights optimizer can be applied. A key innovative asset of our method is its ability to also optimize the traffic on the interdomain peering links. We show, using an operational network as a case study, that our approach does so efficiently at almost no extra computational cost.Comment: 12 pages, Short version to be published in ACM SIGMETRICS 2008, International Conference on Measurement and Modeling of Computer Systems, June 2-6, 2008, Annapolis, Maryland, US

    DMFSGD: A Decentralized Matrix Factorization Algorithm for Network Distance Prediction

    Full text link
    The knowledge of end-to-end network distances is essential to many Internet applications. As active probing of all pairwise distances is infeasible in large-scale networks, a natural idea is to measure a few pairs and to predict the other ones without actually measuring them. This paper formulates the distance prediction problem as matrix completion where unknown entries of an incomplete matrix of pairwise distances are to be predicted. The problem is solvable because strong correlations among network distances exist and cause the constructed distance matrix to be low rank. The new formulation circumvents the well-known drawbacks of existing approaches based on Euclidean embedding. A new algorithm, so-called Decentralized Matrix Factorization by Stochastic Gradient Descent (DMFSGD), is proposed to solve the network distance prediction problem. By letting network nodes exchange messages with each other, the algorithm is fully decentralized and only requires each node to collect and to process local measurements, with neither explicit matrix constructions nor special nodes such as landmarks and central servers. In addition, we compared comprehensively matrix factorization and Euclidean embedding to demonstrate the suitability of the former on network distance prediction. We further studied the incorporation of a robust loss function and of non-negativity constraints. Extensive experiments on various publicly-available datasets of network delays show not only the scalability and the accuracy of our approach but also its usability in real Internet applications.Comment: submitted to IEEE/ACM Transactions on Networking on Nov. 201

    OSI95 Contributions to ISO/IEC and ETSI

    Full text link
    This paper summarizes the activities that were carried out within the standardization bodies ISO/IEC and ETSI during the two-year period of the OSI95 project. However it focuses mainly on the OSI95 contributions

    The Critical Neighbourhood Range for Asymptotic Overlay Connectivity in Ad Hoc Networks

    Full text link
    We first motivate the use of ad hoc overlays. In particular, we argue that overlay routing could play a role in the spreading of ad hoc networks. We then define a simple criterion for neighbourhood: two overlay nodes are neighbours if and only if there exists a path between them of at most R hops, and R is called the (overlay) neighbourhood range. A small R may result in a disconnected overlay, while an unnecessarily large R would generate extra control traffic. We are interested in the minimum R ensuring overlay connectivity, the so-called critical R. We study conditions on R to achieve asymptotic connectivity of the overlay almost surely, i.e. connectivity with probability 1 when the number of nodes in the underlying ad hoc network tends to infinity (so-called dense networks) or when the size of the field tends to infinity (socalled sparse networks), under the hypothesis that the underlying ad hoc network is itself asymptotically almost surely connected. For dense networks, we derive a necessary and sufficient condition on R, and for sparse networks we derive distinct necessary and sufficient conditions that are however asymptotically tight. These conditions, though asymptotic, shed some light on the relation linking the critical R to the number of nodes n, the field size the radio transmission range r and the overlay density D (i.e., the proportion of overlay nodes). These conditions can be considered as approximations when the number of nodes (resp. the field) is large enough. Since r is considered as a function of n or l , we are able to study the impact of topology control mechanisms, by showing how the shape of this function impacts the critical R.PAI MOTIO

    An overlay maintenance protocol for overlay routing on top of ad hoc networks

    Full text link
    peer reviewedThe protocol described in this paper builds and maintains an overlay topology on top of an ad hoc network. The overlay is intended to be used by a routing application. As flooding is a key component of many route discovery mechanisms in MANETs, we evaluate the delivery percentage, bandwidth consumption and time duration of flooding a message on the overlay. We also consider the overlay path stretch as an indicator for the data transfer transmission time. The protocol does not require any information from the underlay routing protocol, nor cooperation from the nodes that do not belong to the overlay. Each overlay node maintains a set of nearest overlay nodes and exchanges its neighbourhood information with them in order to select useful overlay links. Resilience is afforded by setting a minimum number of overlay neighbours. The performance observed over OLSR are good, for all overlay densities and mobility level studied.EU FP6 AN

    The Critical Neighbourhood Range for Asymptotic Overlay Connectivity in Dense Ad Hoc Networks

    Full text link
    peer reviewedWe define, for an overlay built on top of an ad hoc network, a simple criterion for neighbourhood: two overlay nodes are neighbours if and only if there exists a path between them of at most R hops, and R is called the (overlay) neighbourhood range. A small R may result in a disconnected overlay, while an unnecessarily large R would generate extra control traffic. We are interested in the minimum R ensuring overlay connectivity, the so-called critical R. We derive a necessary and sufficient condition on R to achieve asymptotic connectivity of the overlay almost surely, i.e. connectivity with probability 1 when the number of overlay nodes tends to infinity, under the hypothesis that the underlying ad hoc network is itself asymptotically almost surely connected. This condition, though asymptotic, sheds some light on the relation linking the critical R to the number of nodes n, the normalized radio transmission range r and the overlay density D (i.e., the proportion of overlay nodes). This condition can be considered as an approximation when the number of nodes is large enough. Since r is considered as a function of n, we are able to study the impact of topology control mechanisms, by showing how the shape of this function impacts the critical R.PAI MOTIO

    Adaptive Applications over Active Networks: Case Study on Layered Multicast

    Full text link
    peer reviewedIn this paper we study the potential and limitations of active networks in the context of adaptive applications. We present a survey of active networking research applied to adaptive applications, and a case study on a layered multicast active application. This active application is a congestion control protocol that selectively discards data in the active routers, and prunes multicast tree branches affected by persistent congestion. Our first results indicate that active networks can indeed help such an application to adapt to heterogeneous receivers, with a minimum amount of state overhead, equivalent to that of a single IP multicast group

    Congestion Control for Layered Multicast Transmission

    Full text link
    peer reviewedHeterogeneity of receivers makes it hard to control congestion for multicast transmission. Using hierarchical layering of the information is one of the most elegant and efficient approach to tackle this problem. The proposed algorithm is based on this principle and has three objectives: to fulfill intra-session fairness, i.e. between different receivers of the same session; to be fair towards TCP; to fulfill inter-session fairness, i.e. same throughputs (and not number of layers) to concurrent sessions
    • …
    corecore